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Abstract-Uniqueness of deformation of a long thin-walled rigid-plastic cylinder is examined under three
types of load combination: (i) axial tension and torque, (ii) internal pressure and torque, (iii) internal pressure
and axial tension, In each case, the critical rate of hardening, above which uniqueness in guaranteed, is
calculated by using Hill's [I] sufficient condition for uniqueness, The effect of torque, applied at the ends of
the cylinder, on lower bounds to the critical pressure and to the critical axial-load is also discussed,

INTRODUCTION
Stability of a thin rigid-plastic cylinder under internal pressure and tension was first investigated
by Swift[2]. The problem was studied again by Hillier [3] using a different formulation, Yamada
and Aoki [4] considered the effect of torque (twist) on a long cylinder subjected to pressure and
tension by employing the method of Hill [1]. These authors, however, did not attempt to solve the
complete set of equations defining the direction of strain-rate. In fact, Hill's criterion for
uniqueness requires consideration of all velocity fields with strain-rate parallel to m, the unit
normal to the current yield surface. In this paper, full account is taken to the admissible
velocity fields and the problem of uniqueness of deformation of a long thin rigid-plastic cylinder
is re-examined for three load combinations: (i) axial tension and torque, (ii) internal pressure and
torque, (iii) internal pressure and axial tension,

UNIQUENESS CRITERION

Suppose that at a time t during a process of continuing deformation, the velocity Vi and the
nominal traction-rates Tj are prescribed on parts Sv and ST, respectively, of the surface S of the
body. Then, a sufficient condition to guarantee uniqueness of the subsequent incremental
deformation, as obtained by Hill [1], is

(1)

where V is the current volume of the body, the prefix il denotes the difference of corresponding
quantities in two solutions, Sij is the material derivative of the nominal (Lagrangian) stress Sij,

measured with respect to a fixed Cartesian frame of reference Xi at the instant t, and a comma
signifies differentiation with respect to Xi. For an incompressible, isotropic rigid-plastic solid, the
preceding condition can be simplified to

(2)

where Wi == ilVi are incompressible velocity fields vanishing on Sv and are associated with
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strain-rates Alj == ~Ejj (Eli is the plastic strain-rate tensor) that are either zero or parallel to mjj; h is
a positive scalar measure of the current rate of work-hardening. When, in addition to the
prescribed nominal traction-rates on ST and velocity on Sv, a part Sp of the surface of the body is
subject to a uniform fluid pressure p (t), with a given pressure-rate p, the uniqueness condition (2)
is modified to read (see, e.g. Miles [5]):

(3)

where nj is the unit outward normal to the surface. Introducing the cylindrical polar coordinate
system r, 8, z, with z-direction along the axis of the cylinder, and considering the prevailing
stresses for the types of load considered, the terms hAjjAlj, O"ijWk.jWj.k and njWj.kWk in (3) can be
transformed to give

[( au)2 (1 av U)2 (aW)2]hAi'A j = h - + - - +- + -
J I ar r a8 r az (4)

(6)

O""Wk ,w, k = 0" [(au)2 +av (1 au _~) +aw au] +0" [(! au _~) av +(! av +~)\! aw av]
'J .'). rr ar ar r a8 r ar az 88 r a8 r ar r a8 r r a8 az

+ O"zz[au aw +! aw av + (aW)2] +0"8z[2av au _ au (av +! aw)] (5)
az ar r a8 az az ar az ar az r a8

njWj.kWk = [- [~~u + (~;; -~)v + ~;w]-atthecYlindrical surface

r
aw 1 aw aw] .

± a;:u +-;: a8 v+ az W-at cylinder ends.

In (4)-(6), u, v, W now represent the difference of velocity fields in two modes in the r-, 8- and the
z-directions, respectively.

CYLINDER UNDER AXIAL TENSION AND TORQUE
Consider a long thin-walled cylinder subjected to an axial tensile load T and a torque M,

applied at the ends. In the current state, the cylinder is assumed to have thickness t and mean
radius R. The only non-vanishing stress components are

O"zz = O"(say), 0"8z = T(say). (7)

This state of stress satisfies the current equilibrium conditions and, since the stress is everywhere
at the yield point, also satisfies the Mises yield condition expressed in the form

(8)

where k is the yield stress in simple shear. For the stress distribution (7), the strain-rates Aij == ~Eji

must satisfy

(9)

or, expressed in terms of physical components of velocity u, v, W,

au u 1 av 1 aw
-=-+--= --_.ar r r ae 2 az'

(9a)

the general solution of which can be shown to be
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u = - Ar +C(r2+2z2) sin 0

6aArz C 2 2 2
V = - -R-+ (- r + z) cos 0

w = 2Az - 4Crz sinO + l2CaR 2cosO,
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(10)

where a = 7'la and A,C are arbitrary constants. All the quantities in the uniqueness condition (2)
are evaluated using (4), (5), (8) and (10). The resulting expression is integrated about the mean
radius R; a rearrangement of terms then gives the following inequality:

8 2[3h 2 ( 3 2)J C2[ h 2 2 ( 2 /2 15 2)J 0A T(1+3a )-a l+Za +8 3 (1+3a)- a l-3R2-Ta >.

For (11) to hold it is necessary and sufficient that

[
3h 2 ( 3 2)JT(1 +3a )- a 1+Za >0

[ 2 (2 /2 15 2)J3h(1+a )-2a l-3R2-Ta >0.

Obviously, (12) is the stronger condition and yields

(11)

(12)

(13)

(12a)

The hardening parameter h can be expressed in terms of the 'critical subtangent' z on the
generalized stress-strain curve (see e.g. Hillier [3]):

1M
-=--,
z iT de

(14)

where the generalized stress iT and the generalized strain e are defined by relations

(3 )
1/2

- "a = zaijai j ,

Then, using (8) and (14), (12a) can be alternatively expressed as

1 (1 +3a 2/2) (1- 7' 2/e)1/2
""j> (1 +3( 2

)
(12b)

For simple tension alone (i.e. 7' = 0), liz> 1. For any 7' > 0, the value of lIz above which
uniqueness can be guaranteed is reduced; a similar conclusion was also reached by Yamada and
Aoki [4]. The fact that the presence of a twist increases the magnitude of the critical subtangent,
and hence the effective stress, does not however explain what happens to the axial load carrying
capacity of the tube. To investigate this, consider a material model of the Ramberg-Osgood type:

(15)

where ko and m are material constants. Using (15), (14) can be written as

(14a)

With the help of (12a), (14a) and the yield condition (8), the following expression is obtained for
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the critical axial stress:
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(16)

Now, comparing the values of the axial stress for a of- 0 and a = 0, denoted by a- and Uo,

respectively, one gets from (16)

(17)

For the range 0 < m < 1, a- is always less than Uo; the magnitude of the critical axial stress is
therefore reduced. Hence, the conclusion drawn in [4] that "the inclusion of the shear stress Ttends
to increase i and this makes instability less likely" seems to be incorrect.

CYLINDER UNDER INTERNAL PRESSURE AND TORQUE

Consider a closed-ended long thin-walled cylinder subjected to internal pressure p and torque
M applied at its ends. At the current instant, the stress-distribution can be taken as

U9z = T(say). (18)

For the stress-state (18), the Mises yield condition reduces to

1 2 2 2
ZU99+2T =2k , (19)

where the constant k is again the yield stress in simple shear, and the strain-rate components Aij

satisfy following relations:

Azz = 0; Arr +A99 = 0; (20)

or, expressed in terms of physical components of velocity,

aw =0'
az '

aUj! (av +! aw) = -u99/2T,
ar 2 az r ao (20a)

the general solution of which can be shown to be

A
U =-'

r'
(21)

where f3 = T/U99 and A is an arbitrary constant. For the velocity field (21) and the stress-state
(18), the uniqueness criterion (3) is very much simplified. After using the relevant terms from
(4)-(6) and then successively integrating along the z-axis, circumferentially and across the
thickness t, (3) yields a simple inequality of the form

(22)

which, for arbitrary A, implies that

(22a)



Uniqueness of deformation of thin-walled rigid-plastic cylinders 1215

for the deformation to be unique. Using (14) and (19), the inequality (22a) can also be expressed

as

(22b)

When T = 0, and hence f3 = 0, (22b) gives Iii> V3, which is the well-known result for an
internally pressurized long thin tube with closed ends. As in the previous section, it can be
concluded that the effect of a torque is to increase the magnitude of the critical subtangent and
hence the effective stress. A similar conclusion was drawn in[4] also. However, to study the
effect of a twist (torque) on the magnitude of the critical pressure, consider, for example, a
material model expressed by the relation (15). Then, using (14a), (19) and (22a), the following
expression is obtained for the critical circumferential stress:

(23)

Let p and po be the values of the critical internal pressure for f3 f:. 0 and f3 = 0, respectively. Since
(166 = pR It, it follows from (23) that

(24)

which means that for 0 < m < 1, P< po. In other words, the inclusion of twist results in a
reduction of the critical internal pressure.

CYLINDER UNDER INTERNAL PRESSURE AND TENSION

In this section, a closed-ended long thin-walled cylinder subjected to an axial tensile load T
and internal pressure p is considered. For the uniform mode of deformation, the state of stress in
the current configuration is represented by

(1" =0; (25)

and is assumed to satisfy the von Mises yield condition. The deviatoric stresses are

I T
(1zz = 37TR( (25a)

Since the components of strain-rate should be proportional to the corresponding components of
deviatoric stress, one must have

:z: = - PR~:3:~/67TRt = -~ (3y + 1)

A66 =pRI2t - TI67TRt =! (3 -1)
Azz T/37TRt 2 Y

(26)

in which y = p7TR 21 T. The general solution for the velocity field, U, v, w satisfying (26) is found to
be (excluding rigid-body rotations and translations)

U = A(3y~2 - r) - D[r2+2z2+6yR\log r -1)] cos (J
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v = D[ - r2 + 2z 2 + 6'}'R 2 10g r] sinO

IV = 2Az + 4Drz cosO

(27)

with A and D as arbitrary constants. Evaluating the various terms in the uniqueness condition (3)
by using the stress-distribution (25) and the velocity field (27) and then performing the necessary
integration yields:

(28)

for (28) to hold for all A,D, it is necessary and sufficient that

h (I +3·l) - T /37TRt(l - 3'}'2 +9'}'3) > 0

6h(l +3l)- T/37rRt(6-4/ 2 /R 2 -18'}'2+27l»0.

(28a)

(28b)

Evidently, inequality (28a) is the critical one which is associated with the uniform mode of
deformation. The quantity ii, the generalized stress, in the present case is

- _ (2 2 )112 _ T (I 3 2)1/2a- azz+aoe-azzaoo -21fRt + ')' .

Using (14) and (29), (28a) reduces to

If the substitution a = 1/3'}' == T/3p1fR 2 is made, (30) becomes

(29)

(30)

(30a)

which is the same as that obtained in the limit from the corresponding result for a thick-walled
cylinder [6]. The result (30a) differs slightly from that obtained by Yamada and Aoki[4]. The
inequality (35) in [4] can be shown to be an immediate consequence of the inequality (3) of this
paper, if the second part of the surface integral (arising from the cylinder ends) in (6) (of this
paper) is zero. Since in [4], the normal component of the velocity is specified at the cylinder ends,
the end-surface integral is necessarily zero. The present treatment is obviously more general
because no kinematic boundary conditions are imposed.

When a = 0 (i.e. zero tension) and a = oc (i.e. zero pressure), (30a) yields familiar results

I _ 1
->\13- -> 1
Z ' Z

for the expansion of a closed-ended tube under pressure and the extension of a bar under axial
tension, respectively.

CONCLUSIONS

Uniqueness of deformation of a thin-walled rigid-plastic cylinder has been examined under
internal pressure, tension and torque by using Hill's sufficient condition for uniqueness. It has
been shown that a torque, applied at the ends of a cylinder subjected to axial tension or internal
pressure, reduces the lower bound to the axial load carrying capacity or the maximum pressure.

The results of this investigation can be obtained more simply by the method of Swift [2] when
it is known in advance that the uniform homogeneous mode of deformation is the critical one for
non-uniqueness. However, as shown here, this information is available only through Hill's
method which considers all admissible modes of deformation.
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